SPECIFICATIONS

PERFORMANCE

- **Isochronous Operation**: ±0.25% or better
- **Speed Range / Governor**: 1 - 7.5 KHz Continuous
- **Speed Drift with Temperature**: ±1% Maximum
- **Speed Trim Range**: ±450 Hz
- **Remote Variable Speed Range**: 500 Hz - 6 KHz
- **Terminal 9 Sensitivity**: 120 Hz, ±15 Hz/Volt @ 250 K Impedance

RELIABILITY

- **Vibration**: 5G @ 20-500 Hz
- **Testing**: Functionally Tested

NOTE: Reverse voltage is protected against by a parallel diode. A 15 Amp fuse must be installed in the positive battery lead. See Section 3.

INPUT / OUTPUT

<table>
<thead>
<tr>
<th>Input / Output</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Supply</td>
<td>10-40 VDC Transient and Reverse Voltage Protected</td>
</tr>
<tr>
<td>Polarity</td>
<td>Negative Ground (Case Isolated)</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>60mA continuous plus actuator current</td>
</tr>
<tr>
<td>Actuator Current</td>
<td>10A Max Continuous</td>
</tr>
<tr>
<td>Speed Sensor Signal</td>
<td>0.5 - 50 Volts RMS</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL

<table>
<thead>
<tr>
<th>Environment</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
<td>-40°C to 85°C (-40 to 185°F)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>up to 90%</td>
</tr>
<tr>
<td>All Surface Finishes</td>
<td>Fungus-Proof and Corrosion-Resistant</td>
</tr>
</tbody>
</table>

PHYSICAL

<table>
<thead>
<tr>
<th>Physical</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>See Section 2 “Installation”</td>
</tr>
<tr>
<td>Weight</td>
<td>1.2 lbs (545 grams)</td>
</tr>
<tr>
<td>Mounting</td>
<td>Any position, Vertical Preferred</td>
</tr>
</tbody>
</table>

INSTALLATION

- Mount in a cabinet, engine enclosure, or sealed metal box.
- Avoid Extreme Heat
- Dimensions: Vertical orientation allows for the draining of fluids in moist environments.
3 **WIRING**

![Wiring Diagram]

TERMINAL	**DEFINITION**	**NOTES**
1 | Actuator | #16 AWG (1.3mm sq) or larger wire
2 | Magnetic Speed Pickup | Wires must be twisted and/or shielded for their entire length
3 | Battery Power (-) | #16 AWG (1.3mm sw) or larger wire
4 | Battery Power (+) | A 15 amp fuse must be installed in the positive battery lead to protect against reverse voltage
5 | Speed Trim Control | Variable speed isochronous operation can be obtained by connecting a 5K potentiometer to Terminals 8, 9, and 10. To select the variable speed range, connect the appropriate resistor, "R", to posts E4 and E5. See the diagram below.

FREQUENCY RANGE (Hz)	**RESISTOR**
850 | NONE
1280 | 2M
1880 | 750K
3400 | 300K
5700 | 150K

RECOMMENDATIONS
1. Shielded cable should be used for all external connections to the ESD control.
2. One end of each shield, including the speed sensor shield, should be grounded to a single point on the ESD case.

4 **STARTING THE ENGINE**

IMPORTANT

Make sure the following adjustments are set before starting the engine.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>Middle Position</td>
</tr>
<tr>
<td>Stability</td>
<td>Middle Position</td>
</tr>
<tr>
<td>Speed Trim Control</td>
<td>Middle Position</td>
</tr>
</tbody>
</table>

The speed control unit governed speed setting is factory set at approximately engine idle speed. (1000 Hz., Speed sensor signal or 600 RPM)

Crank the engine with DC power applied to the governor system. The actuator will energize to the maximum fuel position until the engine starts. The governor system should control the engine at a low idle speed. If the engine is unstable after starting, turn the GAIN and STABILITY adjustments counterclockwise until the engine is stable.

NOTE

The governed speed set point is increased by clockwise rotation of the SPEED adjustment pot. Remote speed adjustment can be obtained with an optional 5K Speed Trim Control. (See Section 2.)

5 **ADJUSTING FOR STABILITY**

Once the engine is at operating speed and at no-load, the following governor performance adjustments can be made:

START FUEL ADJUSTMENT

1. Rotate the GAIN adjustment clockwise until instability develops. Gradually move the adjustment counterclockwise to insure stable performance (270° pot).
2. Rotate the STABILITY adjustment clockwise until instability develops. Gradually move the adjustment counterclockwise until stability returns. Move the adjustment one division further to insure stable performance (270° pot).
3. Gain and stability adjustments may require minor changes after engine load is applied. Normally, adjustments made at no load achieve satisfactory performance.

NOTE

If instability cannot be corrected or further performance improvements are required, refer to the SYSTEM TROUBLESHOOTING section.
If the engine governing system does not function, the fault may be determined by performing the voltage tests described in Steps 1 through 4. Positive (+) and negative (-) refer to meter polarity. Should normal values be indicated during troubleshooting steps, and then the fault may be with the actuator or the wiring to the actuator. Tests are performed with battery power on and the engine off, except where noted. See actuator publication for testing procedure on the actuator.

System Troubleshooting

<table>
<thead>
<tr>
<th>STEP</th>
<th>WIRES</th>
<th>NORMAL READING</th>
<th>PROBABLE CAUSE OF ABNORMAL READING</th>
</tr>
</thead>
</table>
| 1 | 6(+) & 5(-) | Battery Supply Voltage (12, 24, or 32 VDC) | 1. DC battery power not connected. Check for blown fuse, switch off power.
2. Low battery voltage
3. Wiring error |
| 2 | 8(+) & 10(-) | 6.5-7.1V with speed trim
7.1-7.9V without speed trim | 1. Speed trim shorted or miswired.
2. Defective unit. |
| 3 | 7(+) & 10(-) | 1.8-2.6V | 1. Low battery voltage
2. Defective Unit |
| 4 | 3(+) & 4(-) | 1.0 VAC RMS min. while cranking | 1. Gap between speed sensor and gear teeth too great. Check Gap.
2. Improper or defective wiring to the speed sensor. Resistance between D and C should be 160 to 1200 ohms. See specific mag pickup data for resistance.
3. Defective speed sensor. |
| 5 | 7(+)& 10(-) while cranking | 8.4-9.4V | 1. SPEED adjustment set too low.
2. Wiring error to actuator.
3. Defective speed control unit.
4. Defective actuator. |
| 6 | 6(+) & 2(-) | 0.2-1.0V while cranking | 1. Wiring error to actuator
2. Defective speed control unit
3. Defective actuator |

If unsuccessful in solving instability, contact GAC for assistance.
GAC@governors-america.com or call: 1-413-233-1888

Unsatisfactory Performance

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>NORMAL READING</th>
<th>PROBABLE CAUSE OF ABNORMAL READING</th>
</tr>
</thead>
</table>
| Engine Overspeeds | 1. Do Not Crank. Apply DC power to the governor system.
2. Manually hold the engine at the desired running speed. Measure the DC voltage between Terminals 2(+) & 6(+) on the speed control unit. | 1. After the actuator goes to full fuel, disconnect the speed sensor at Orange and Green wires. If the actuator is still at full fuel-speed then the speed control unit is defective.
2. If the actuator is at minimum fuel position and there exists an erroneous position signal, then check speed sensor cable. |
| Actuator does not energize fully while cranking | 1. Measure the DC voltage between Terminals 2(+) & 6(+) on the speed control unit. Should be 0.2 to 1.0 volts. If not:
2. Momentarily connect Terminal 2 to 6. The actuator should move to the full fuel position. | 1. Actuator wiring incorrect
2. If the voltage is less than:
 a. 7V for a 12V system, or
 b. 14V for a 24V system, Then:
 3. Check or replace battery.
3. Actuator or battery wiring in error
4. Actuator or linkage binding
5. Defective actuator |
| Engine remains below desired governed speed | 1. Measure the actuator output, Terminal 1 & 2, while running under governor control. | 1. If voltage measurement is within 1.5 VDC of the battery supply voltage level, then fuel control is restricted from reaching full fuel position, possibly due to mechanical governor, carburetor spring, or linkage interference.
2. Speed parameter set too low |
INSTABILITY

<table>
<thead>
<tr>
<th>INSTABILITY</th>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE OF ABNORMAL READING</th>
</tr>
</thead>
</table>
| Fast Periodic | The engine seems to jitter with a 3Hz or faster irregularity of speed. | 1. Readjust the Gain and Stability for optimum control.
2. Turn off other electrical equipment that may be causing interference.
3. Cutting jumper from E1 to E2 will reduce the tendency to jitter. If not:
4. Remove the jumper from E6 to E7 |
| Slow Periodic | An irregularity of speed below 3Hz. | 1. Readjust the Gain and Stability for optimum control.
2. Adjust Dead time compensation by adding a capacitor from posts E2 to E3 (negative on E2) Start with 10 mfd's and increase until instability is eliminated.
3. Check fuel system linkage during engine operation for:
 a. binding
 b. high friction
 c. poor linkage |
| Non-Periodic | Erratic Engine Behavior | 1. Increasing the Gain should reduce the instability but not totally correct it.
If this is the case, there is most likely a problem with the engine itself.
Check for:
 a. engine mis-firings
 b. an erratic fuel system
 c. load changes on the generator set voltage regulator.
2. If the throttle is slightly erratic, but the performance is fast, removing the jumper from E6 to E7 will tend to steady the system. |

Insufficient Magnetic Speed Signal

A strong magnetic speed sensor signal will eliminate the possibility of missed or extra pulses. The speed control unit will govern well with a 0.5VAC RMS speed sensor signal. However, a speed sensor signal of 3VAC RMS or greater is recommended.

The amplitude of the speed sensor signal can be raised by reducing the gap between the tip of the speed sensor and the top land of a tooth on the engine's ring-gear. This gap should not be any smaller than 0.020 in. (0.45 mm). With the engine stopped, turn the magnetic speed sensor CW until it touches the top land of a ring-gear tooth, then turn it CCW 3/4 turn. This will provide an acceptable gap.

720 Silver Street,
Agawam, MA 01001 USA
GAC@governors-america.com
www.governors-america.com